机器学习| 支持向量机详解
在前面的文章中,我们对线性分布和非线性分布的数据处理方法进行了简单的介绍和实际的实验操作,当前还有一种机器学习方法,它在解决小样本、非线性及高维模式识别中都表现出了许多独特的优势,在样本量较小的情况,其实际运用效果甚至超过了神经网络,并且其不仅可以应用于线性分布数据,还可以用于非线性分布数据,相比于其他基本机器学习分类算法如逻辑回归、KNN、朴素贝叶斯等,其最终效果的表现一般都会优于这些方法。
在前面的文章中,我们对线性分布和非线性分布的数据处理方法进行了简单的介绍和实际的实验操作,当前还有一种机器学习方法,它在解决小样本、非线性及高维模式识别中都表现出了许多独特的优势,在样本量较小的情况,其实际运用效果甚至超过了神经网络,并且其不仅可以应用于线性分布数据,还可以用于非线性分布数据,相比于其他基本机器学习分类算法如逻辑回归、KNN、朴素贝叶斯等,其最终效果的表现一般都会优于这些方法。
在分类预测中,以概率论作为基础的算法比较少,而朴素贝叶斯就是其中之一。朴素贝叶斯算法实现简单,且预测分类的效率很高,是一种十分常用的算法。
介绍 K-近邻算法之前,首先说一说最近邻算法。最近邻算法(Nearest Neighbor,简称:NN),其针对未知类别数据 $x$,在训练集中找到与 $x$ 最相似的训练样本 $y$,用 $y$ 的样本对应的类别作为未知类别数据 $x$ 的类别,从而达到分类的效果。
对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍最常用的3个:
Update your browser to view this website correctly.&npsb;Update my browser now