机器学习|层次聚类方法

机器学习|层次聚类方法

在之前的文章中,我们学习了划分聚类方法,并着重介绍了其中的 K-Means 算法。K-Means 算法可以说是用处非常广泛的聚类算法之一,它非常好用。但是,当你使用过这种算法之后,你就会发现一个比较让人「头疼」的问题,那就是我们需要手动指定 K 值,也就是聚类的类别数量。

阅读更多
机器学习|划分聚类之 K-Means 详解

机器学习|划分聚类之 K-Means 详解

划分聚类,顾名思义,通过划分的方式将数据集划分为多个不重叠的子集(簇),每一个子集作为一个聚类(类别)。

在划分的过程中,首先由用户确定划分子集的个数 k$k$,然后随机选定 k$k$ 个点作为每一个子集的中心点,接下来通过迭代的方式:计算数据集中每个点与各个中心点之间的距离,更新中心点的位置;最终将数据集划分为 k$k$ 个子集,即将数据划分为 k$k$ 类。

而评估划分的好坏标准就是:保证同一划分的样本之间的差异尽可能的小,且不同划分中的样本差异尽可能的大。

阅读更多
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×