机器学习| 支持向量机详解
在前面的文章中,我们对线性分布和非线性分布的数据处理方法进行了简单的介绍和实际的实验操作,当前还有一种机器学习方法,它在解决小样本、非线性及高维模式识别中都表现出了许多独特的优势,在样本量较小的情况,其实际运用效果甚至超过了神经网络,并且其不仅可以应用于线性分布数据,还可以用于非线性分布数据,相比于其他基本机器学习分类算法如逻辑回归、KNN、朴素贝叶斯等,其最终效果的表现一般都会优于这些方法。
在前面的文章中,我们对线性分布和非线性分布的数据处理方法进行了简单的介绍和实际的实验操作,当前还有一种机器学习方法,它在解决小样本、非线性及高维模式识别中都表现出了许多独特的优势,在样本量较小的情况,其实际运用效果甚至超过了神经网络,并且其不仅可以应用于线性分布数据,还可以用于非线性分布数据,相比于其他基本机器学习分类算法如逻辑回归、KNN、朴素贝叶斯等,其最终效果的表现一般都会优于这些方法。
Update your browser to view this website correctly.&npsb;Update my browser now