机器学习| K-近邻算法详解
最近邻算法
介绍 K-近邻算法之前,首先说一说最近邻算法。最近邻算法(Nearest Neighbor,简称:NN),其针对未知类别数据 $x$,在训练集中找到与 $x$ 最相似的训练样本 $y$,用 $y$ 的样本对应的类别作为未知类别数据 $x$ 的类别,从而达到分类的效果。
介绍 K-近邻算法之前,首先说一说最近邻算法。最近邻算法(Nearest Neighbor,简称:NN),其针对未知类别数据 $x$,在训练集中找到与 $x$ 最相似的训练样本 $y$,用 $y$ 的样本对应的类别作为未知类别数据 $x$ 的类别,从而达到分类的效果。
对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍最常用的3个:
Update your browser to view this website correctly.&npsb;Update my browser now